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ABSTRACT: A numerical technique is presented to solve nonlinear parabolic Burgers’ equation arising in
unsteady flow of the generalized Newtonian fluid. Cubic B-spline functions are used for discretization along
with the zer os of Chebyshev polynomial as collocation points. Using the oper ational matrix of derivative, the
problem reducesto a set of differential algebraic equations, which is solved by MATLAB odel5s solver. The
practical exampleisincluded to demonstrate the validity and applicability of technique.
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[.INTRODUCTION

Consider the one-dimensional Burgers’ equation
U,+UU, =AU,,, asx<b, t=20, ...(1)

with the initial condition
U((x,0)=f(x),asx<b,..<2

and the boundary condition

U(at)=4, Ubt) =4, ..0

where A4 > 0 isthe coefficient of kinematics viscosity,
and fy, f, and f(X) will be chosen in a later

section. This is a nonlinear parabolic equation and
describes in a simple manner a balance between
nonlinear convection and linear diffusion or dissipation.
Burger’s equation is well-known to show shock
formation. It is the 1D Navier-Stokes equation without
the pressure term and the volume forces. Due to its
similarity to the Navier-Stokes equation, Burgers’
equation often arises in the mathematical modelling
used to solve problems in fluid dynamics involving
turbulence. Bateman [1] has first introduced Burgers’
equation as worthy of study and gave its steady
solutions. After that Burgers [2] simplified the Navier-
Stokes equation by just dropping the pressure term. It
was later treated as a mathematical model for
turbulence and such an equation is widely referred to as
Burgers’ equation. Since then the equation has found
applications in field as diverse as number theory, gas
dynamics, heat conduction, elasticity, etc. However,
Hopf [3] and Cole [4] have shown that the
homogeneous Burgers’ equation lacks the most
important property attributed to turbulence. The exact
solutions of the one dimensional Burgers’ equation
have been surveyed by Benton and Platzman [5].

In many cases these solutions involve infinite series
which may converge very slowly for small values of the
viscosity coefficient A which correspond to steep
wave fronts in the propagation of the dynamic wave-
forms [6]. Many studies have been done on the
numerical solutions of Burgers’ equation to deal with

solutions for the small values of 4. A finite element
method has been given by Caldwell et. al. [7], to solve
Burgers’ equation by altering the size of the element at
each stage. Moreover Caldwell and Smith [8] have
discussed the comparison of a number of numerical
approaches to the equation. Nguyen and Reynen [9]
aso suggested a space-time finite element method
based on a least square weak formulation using
piecewise linear shape functions. A kind of finite
element method based on weighted residual formulation
is given by Varo glu and Liam Finn [10] and
demonstrated the high accuracy and the stability. Rubin
and Graves [11] have used the spline function technique
and quasi-linearization for the numerical solution of the
Burgers’ equation in one space variable. A cubic spline
collocation procedure is developed for the Burgers’
equation in the papers [12, 13]. The implicit-finite
difference scheme, together with cubic splines
interpolating space derivatives in the Burgers’ equation,
has been proposed in the papers [14-17].

In the present work, the model equations are discretized
using the technique of cubic B-spline collocation
method (CSCM). The cubic B-spline is used for the
interpolation function, with zeros of shifted Chebyshev
polynomials as collocation points. Solution and its
principal  derivatives over the subinterval are
approximated by the combination of the cubic B-splines
and unknown element parameters.
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Placing nodal values and its derivatives in the Burgers’ equation are resulting in system consisting of n+1

equations for N+ 3 parameters. The resulting system can be solved with MATLAB after the boundary conditions
are applied.

[I.NUMERICAL SCHEME

A. Mesh Selection

Consider  the  uniform  patitonz ={a=Xy <X <..<Xyq <Xy =D}, over Q  with
h=x.-X.,, m=1,...,Nn. Then cubic B-splines functions B,,(X) are used astrial function [18], which can be
written in terms of nodes as follows:

|:(X - Xm—z)3 7[Xm—2’ Xm—l]
? 4307 (X = X,) +30(X =X, 0)" = 3(X = %) [ Xg X
Bm(X) :ﬁ °+ 3h2(xm+1 - X) + 3h(xm+l - X)Z - 3(Xm+1 - X)3 7[Xm’ Xm+1] : ©)
HXp =% D Xz]
&Y ,otherwise

where B, (X) are the B-spline basis functions (four control points or blending functions). The blending functions

sum to one and are positive on [a,b] and not everywhere. The cubic B-spline functions are defined as:
B (x) =1(1-3x+3x* - X%, B,(x) =1(4-6x2 +3x°),
By(x) = (1+3x+3x° - 3x%), By(¥) =1().

B. Selection of Collocation Points

The roots of shifted Chebyshev polynomials are used as collocation points because these roots have the tendency to
keep the error down to a minimum at the corners. Usually, Chebyshev polynomials can be written in the following
form:

T, (X) =cosré, cosé =X, -1<x<1,
where T, (X) =1 at X =1, thevalue of X is +1 for even I and —1 for odd I . The turning points of T, (X)

sinrg .
occur at the zeros of ,i.e, atthe r —1 pointsas:

i Oz0O .
¢ =—, X =cos i=12,..r-1.
i ; X Br H 1

Both turning points and zeros are symmetrical about the origin X =0. The finite range a< £ <b, can be
transformed into any range by using & =0.5(b—a)x+0.5(b+a) . Particularly, for required range 0< £ <1, it
will be £ =0.5(x+1), i.e, X=2& —1. Accordingly, for thisrange T, (X) can be written with a special notation
asfollows:

T (&) =T.(26-1), 0<é&<1.

The properties of Tr* (&) can be deduced from those of T, (2£ —1) and in particular, all values of Tr* (&) can be
generated from the recurrence system:

Traa(&) = 2026 -T; (£)-T,_a(é),  with Tg(£) =1, T; (&) =2&-1.

C. Choice of trial function and discretization process



Mittal 57

The approximate solution U of exact solution U can be written in the followi ng form:
n+l

Ug(x1)=U(x1) = Y & (0B 59, ..(5)
i=0

where B; 3(X) isacubic B-splines.

From Eg. (5) the approximate solution U(X,t) is substituted for U (X,t) in the differential equation (1). Thereby
obtained discretized form can be written as follows:

QU(xt) _1a0(xt) _ 1% dBiS()

x R ox Z %) -
QU(xt) 1 020(xt)_ 1 d? Bi ( )
T e T 2 A0S -
1 n+l
U (x.t) _dU(x.t) _t'ds (t)Bi 0| ®

ot T

After discretization, the collocation equations and the boundary conditions form a system of n+3 differential

algebraic equation (DAES) in N+ 3 unknowns. The system is solved with MATLAB odel5s differential equation
solver using initial approximation from Eq. (3).

[11. APPLICATION OF NUMERICAL APPROACH
Consider the Burger’s equation (1) with the initial condition:

U(x,0) =sinzx, 0<sx<1 ...(9)
and the homogeneous boundary conditions:
u@,t)=Uu@t)=0,t>0 ...(10)

The exact solution of Burger’s equation (1) with conditions (9) and (10) was given by Cole [4] as:

> by exp(-n*z2At)nsin nzx
U (x,t) = 274 —=L ...(12)
by + Y by exp(-n’z*at)ncosnzx
n=1

where by =I;exp[—(2;z/1)'1(1—cos”x)] dx and by, = 2{; exp[—(2722) "} (1- cosx)] cosnzxdx, n=1

are Fourier coefficients.

The theoretical solution of this problem was expressed as an infinite series by Cole [4].

The discretized form of Eq. (1) along with initial and boundary conditions (9) and (10) respectively, using CSCM is
given below:

> 208,00 =15 250) B 25(08.4@5%5() BB
with initial condition
01(t) +40,(t) + 55(t) =sin(xX), ...(13)

and boundary conditions
oy (t) +40,(t) +05(t) =0, (14

0,41 (t) +40,(t) +0,,4(t) =0. ...(15)
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In Fig. 1, the 3D graph presents physical behavior of
the approximate solution of system (12)-(15). It shows
that as viscosity gets smaller and smaller, the graphs
demonstrate a very sharp front near the left boundary
and the steepness of the solution increases sharply near
the right boundary. This steepness is controlled by
taking small step for space variable x [20]. For different
viscosity parameters, the numericad values of
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U(x,0.1) obtained by using At =0.0001, h =
0.0125, are presented in Table 1. A comparison of
present method is shown with using different types of
collocation points (i.e zeros of shifted Chebyshev
polynomial and zeros of shifted Legendre polynomial)
and with previous ones reported by [20,21,22,23, 24].
This shows that the CSCM gives a good agreement
with the earlier work.

(b)
Fig. 1. Physical behavior of approximate solution for: (a) h=0.0125, A =1, At=0.0001 (b) h=0.0125, A =
0.005, At=0.0001.

Table 1: Comparison of resultsat t =0.1for A =1, At=0.00001, h = 0.0125.

CHCM-C CHCM-L EFDM EEFDM

X Exact  CSCM-C__ CSCM-L [20] [20] [21] [22] [23] [23] [24] [25]

01 010954 010954 010958  0.10961 0.10954 010952 01095 010952 010955 010955  0.10954
02 020979 020979 020985  0.20989 0.20978 020975 020998 020975 020981 020981  0.2098
03 020190 029190 020201  0.29206 0.29190 029184 029213 029184 020192 029193  0.29191
04 034792 034798 034803  0.34811 0.34791 034785 034818 034786 034795 034796  0.34793
05 037158 037158 037161  0.37165 0.37158 037149 037185 037151 037161 037163 037158
06 035905 035003 035921  0.35931 0.35904 035896 035932 035898 035007 035910  0.35904
07 030091 030992 031015 031011 0.30990 030083 031017 030985 030993 030995  0.30989
08 022782 022782 022799  0.22809 0.22782 022776 022805 022778 022783 022786  0.22780
09 012069 012069 012078  0.12079 0.12069 012065 012083 012067 012070 012071  0.12067
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[V.CONCLUSION

In this paper, the cubic B-spline collocation method is
presented to solve Burger’s equation which illustrates
the validity and accuracy of the given method. The
cubic B-spline collocation method is inherently
smoother than other methods available in literature. The
proposed method is simple, easy to implement and
involves less computational effort. It has wide
applicability to different engineering problems.
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